A Novel Chemoselective Cleavage of (*tert*-Butyl)(dimethyl)silyl (TBS) Ethers Catalyzed by Ce(SO₄)₂·4 H₂O

by Davir González-Calderón^{*a}), Carlos A. González-González^a), Aydeé Fuentes-Benítez^a), Erick Cuevas-Yáñez^b), David Corona-Becerril^b), and Carlos González-Romero^{*a})

 ^a) Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico (phone: +52-722-2175109 ext 113; fax: +52-722-2173890; e-mail: qfb_dgonzalez@yahoo.com.mx;

(phone: +32-722-2175109 ext 115, tax: +32-722-2175690, e-mail: qtb_ugonzatez@yanoo.com.mx, cgonzalezr@uaemex.mx)

^b) Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Toluca-Atlacomulco Km. 14.5, San Cayetano, Toluca, Estado de México, 50200, Mexico

(*tert*-Butyl)(dimethyl)silyl ('BuMe₂Si; TBS) phenyl/alkyl ethers were efficiently cleaved to the corresponding parent hydroxy compounds in good yields using catalytic amounts of $Ce(SO_4)_2 \cdot 4 H_2O$ by microwave-assisted or conventional heating in MeOH. Intramolecular and competitive experiments demonstrated the chemoselective deprotection of TBS ethers in the presence of triisopropylsilyl ('Pr₃Si; TIPS) and (*tert*-butyl)(diphenyl)silyl ('BuPh₂Si; TBDPS) ethers.

Introduction. – Silyl ethers are among the most frequently used to protect OH groups, because they are easily and efficiently installed and are stable to a variety of reagents and reaction conditions [1]. In this context, the (*tert*-butyl)(dimethyl)silyl ('BuMe₂Si; TBS), triisopropylsilyl ('Pr₃Si; TIPS), and (*tert*-butyl)(diphenyl)silyl ('BuPh₂Si; TBDPS) moieties are among the most important protecting groups and are often used in multistep organic syntheses [2]. Ce-based inorganic reagents for desilylation have been reported, *e.g.*, silica gel-supported ceric ammonium nitrate (CAN-SiO₂; stoichiometric amounts) [3], CAN/MeOH (1.2 equiv.) [4], CeCl₃ · 7 H₂O/MeCN (2.0 equiv.) [5], and Ce(OTf)₄/MeCN [6]. Unfortunately, none of these reagents lead to selectivity for TBS, TIPS, or TBDPS ethers; moreover, stoichiometric amounts of reagents are particularly disadvantageous for large-scale reactions.

Results and Discussion. – Within our current research, we observed that bis-TBS ether **1a** was cleaved within minutes upon microwave heating in MeOH containing $Ce(SO_4)_2 \cdot 4 H_2O$. As a consequence, we decided to investigate the $Ce(SO_4)_2 \cdot 4 H_2O$ -catalyzed cleavage of silyl ether **1a** in more detail.

Optimization studies for this cleavage process were carried out on **1a**. Complete removal of the silyl group elimination occurred within 20 min upon microwave heating at 130° in MeOH containing 20 mol-% $Ce(SO_4)_2 \cdot 4 H_2O$. At room temperature, silyl group loss was slow, but it occurred at an acceptable rate at 60° (conventional heating) and was complete within 12 h.

The optimized conditions, under microwave and conventional heating conditions (12 h), were then used to study the deprotection of a series of silylated alcohols and/or

^{© 2014} Verlag Helvetica Chimica Acta AG, Zürich

phenols (*Table 1*). Both TBS ethers of alcohols (*Entries* 1-3 and 5) and phenols (*Entries* 7 and 10) were very efficiently cleaved in high yields, while TIPS aryl ethers were cleaved only in trace amounts or not at all (*Entries* 8 and 11). TBDPS Alkyl and aryl ethers were essentially inert.

The data in *Table 1* clearly indicate that selective cleavage of TBS alkyl ethers should be possible. Indeed, the results presented in *Table 2* reveal that TBS groups of alkyl ethers are cleanly and efficiently removed in the presence of TIPS phenyl (*Entries 1* and 2), or TBDPS phenyl (*3* and 4) or alkyl (*Entries 5* and 6) ethers within the same molecule. In addition, we have also carried out a series of intermolecular competition experiments (*Table 3*) which led to the conclusion that TBS aryl ethers are very selectively cleaved in the presence of TIPS or TBDPS aryl ethers.

Conclusions. – We reported that catalytic amounts $Ce(SO_4)_2 \cdot 4 H_2O$ in MeOH selectively cleaves TBS phenyl or alkyl ethers in the presence of TIPS, or TBDPS phenyl or aryl ethers. In addition to the selectivity, this methodology is noteworthy because $Ce(SO_4)_2 \cdot 4 H_2O$ is mild, easy to handle, and of relatively low toxicity.

Financial support from *UAEMéx* (Project No. 2441) and *CONACyT* (postgraduate scholarship) is gratefully acknowledged. The authors would like to thank the referee and *Joseph M. Muchowski* (visiting professor, UNAM) for their valuable comments and suggestions; *M. N. Zavala-Segovia, L. Triana-Cruz* (CCIQS UAEMéx-UNAM), and *E. Díaz-Torres* (UNAM) for the technical support. Special thanks to *SIGNA S. A. de C. V.* for its valuable assistance.

Entry	Silyl ether	Alcohol ^a)	Yield [%] ^b) ^c)	
			MW ^d)	$\Delta^{e})$
1	1 a	1	94	96
2	2a	2	90	88
3	3a	3	93	95
4	3b	3	NR	NR
5	4 a	4	96	91
6	4b	4	NR	trace
7	5a	5	94	94
8	5b	5	NR	trace
9	5c	5	NR	NR
10	6a	6	93	90
11	6b	6	trace	NR
12	6c	6	NR	NR

Table 1. Deprotection of Silyl Ethers Using 20 mol-% $Ce(SO_4)_2 \cdot 4H_2O$ by Microwave (MW) orConventional Heating

^a) Confirmed by comparison of the, ¹H- and ¹³C-NMR, and MS data with those of the authentic sample. ^b) Yields refer to chromatographically isolated pure compounds. ^c) In some cases, no reaction (NR) occurred, or product yields were very low, and *ca*. 90–98% of starting material was recovered. ^d) At 130°, 20 min. ^e) At 60°, 12 h.

Table 2. Intramolecular Chemoselective Deprotection of TBS Alkyl Ethers in the Presence of a) TIPS orTBDPS Phenyl Ethers (Entries 1-4) and b) TBDPS Alkyl Ethers (Entries 5 and 6)

Entry	Substrate	Product ^a)	Yield [%] ^b)	
			$\overline{\Delta^{c}}$)	MW ^d)
1	7a	7b	95	93
2	8a	8b	96	96
3	7c	7d	94	92
4	8c	8d	93	97
5	9a	9	95	92
6	10a	10	93	96

^a) Confirmed by comparison of the ¹H- and ¹³C-NMR, and MS data with those of the authentic sample. ^b) Yields refer to chromatographically isolated pure compounds. ^c) At 60°, 12 h. ^d) At 130°, 20 min.

Table 3.	Chemoselective Deprotection of TBS Phenyl Ethers in the Presence of TIPS and TBDPS Pheny	ıl
	Ethers Evaluated by Competition Experiments	

^a) Confirmed by comparison of the ¹H- and ¹³C-NMR, and MS data with those of the authentic sample. ^b) Yields refer to chromatographically isolated pure compounds. ^c) At 60°, 12 h. ^d) At 130°, 20 min.

Experimental Part

General. The starting materials were purchased from Aldrich Chemical Co. and were used without further purification. The microwave-assisted reactions were performed using a focused microwave unit Anton-Paar Synthos 300; constant factor of the microwave, 1.214. The temp. was monitored with an IR temp. sensor. In all experiments, the microwave temp. was held constant. Reactions were carried out in 5-ml glass vessels with a magnetic stir bar, which were sealed with a cap septum. The specific reaction time corresponds to the total irradiation time. After completion of the reaction, the mixture was cooled to 25° via air-jet cooling. TLC: Silica-gel plates (SiO₂; 0.20-mm thickness); visualization with UV light at 254 nm or by staining with a base soln. of CoCl₂/H₂SO₄ ac. (2 g/100 ml H₂SO₄ 10%), followed by heating. Flash column chromatography (FC): SiO₂ 60 (230–400 mesh). M.p.: Fischer–Johns Scientific melting-point apparatus; uncorrected. ¹H- and ¹³C-NMR spectra: Bruker Avance 300 MHz, and a Varian 500 MHz; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Shimadzu GCMS-QP2010 Plus; in m/ z (rel. %).

Microwave Irradiation. A 10-ml reaction vessel was charged with a magnetic stir bar, 0.4 mmol of TBS ether, and 20 mol-% $Ce(SO_4)_2 \cdot 4 H_2O$ in 2 ml of MeOH. A septum cap was affixed, and the vessel was placed in the microwave cavity of an *Anton-Paar* microwave equipment. The stirred mixture was irradiated at 130° for 20 min. After cooling to r.t., TLC indicated the disappearance of starting material. The solid $Ce(SO_4)_2$ was filtered off, and the solvent was removed under reduced pressure. FC afforded the pure alcohol. All products were spectrally identical with authentic alcohols.

Conventional Heating. A 10-ml round-bottom flask was equipped with a magnetic stir bar and a reflux condenser. Then, TBS ether (0.4 mmol) and 20 mol-% $Ce(SO_4)_2 \cdot 4 H_2O$ were added in MeOH (2.0 ml). The mixture was stirred at 60° for 12 h. After cooling to r.t., TLC indicated the disappearance of starting material. The solid $Ce(SO_4)_2$ was filtered off, and the solvent was removed under reduced pressure. FC afforded the pure alcohol. All products were spectrally identical with authentic alcohols.

(3aR,4S,5R,6aS)-3,3a,4,5,6,6a-Hexahydro-5-hydroxy-4-(hydroxymethyl)-2H-cyclopenta[b]furan-2one (1). White solid. M.p. 115 – 117°. ¹H-NMR (300 MHz, CDCl₃): 0.9 (s, OH); 1.22 (s, OH); 1.9 – 2.2 (m, 1 H); 2.41 (td, J = 6.6, 21.5, 1 H); 2.56 (d, J = 2.4, 1 H); 2.62 (td, J = 2.4, 5.0, 2 H); 2.67 (d, J = 2.1, 1 H); 2.80 (dd, J = 9.6, 18.0, 2 H); 3.63 (dd, J = 72, 10.5, 1 H); 3.73 (dd, J = 5.7, 10.5, 1 H); 3.85 (d, J = 6.6, 1 H); 4.19 (q, J = 6.3, 1 H); 4.94 (td, J = 2.7, 70, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 35.2 (CH₂); 39.5 (CH); 40.7 (CH₂); 55.1 (CH); 63.6 (CH₂); 75.5 (CH); 83.4 (CH); 176.8 (C=O). EI-MS: 173 ([M + 1]⁺), 154 (12), 137 (15), 126 (30), 95 (18), 82 (40), 67 (23), 54 (100), 41 (30), 28 (19), 4 (15).

(3aR,4S,5R,6aS)-5-{[(tert-Butyl)(dimethyl)silyl]oxy]-4-({[(tert-butyl)(dimethyl)silyl]oxy]methyl)-3,3a,4,5,6,6a-hexahydro-2H-cyclopenta[b]furan-2-one (**1a**). White solid. M.p. 60-63°. ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3): 0.045 - 0.036 (m, 12 \text{ H}); 0.86 (s, 9 \text{ H}); 0.88 (s, 9 \text{ H}); 1.99 - 1.95 (m, 2 \text{ H}); 2.25 - 2.2 (m, 1 \text{ H}); 2.53 (dd, J = 18.0, 3.0, 1 \text{ H}); 2.68 - 2.63 (m, 2 \text{ H}); 2.77 (dd, J = 18.0, 10.5, 1 \text{ H}); 3.47 (dd, J = 10.5, 5.5, 1 \text{ H}); 3.54 (dd, J = 10.5, 5.5, 1 \text{ H}); 4.15 (q, J = 5.0, 2 \text{ H}); 4.92 (dt, J = 7.0, 2.5, 1 \text{ H}). {}^{13}\text{C-NMR} (125 \text{ MHz}, \text{CDCl}_3): -5.5 (4 \text{ MeSi}); 18.2 (2 \text{ C}); 25.8 (6 \text{ Me}); 35.5 (\text{CH}_2); 39.1 (\text{CH}); 41.0 (\text{CH}_2); 56.9 (\text{CH}_2); 62.5 (\text{CH}); 74.5 (\text{CH}); 84.1 (\text{CH}); 177.2 (\text{C=O}).$

2-(*I*H-*Indol-3-yl*)*ethanol* (**2**). Beige solid. M.p. $56-59^{\circ}$. ¹H-NMR (500 MHz, CDCl₃): 1.9 (*s*, OH); 3.0 (*t*, *J* = 6.5, 2 H); 3.86 (*t*, *J* = 6.5, 2 H); 6.9 (*s*, 1 H); 7.11 (*t*, *J* = 7.5, 1 H); 7.19 (*t*, *J* = 7.5, 1 H); 7.30 (*d*, *J* = 7.5, 1 H); 7.59 (*d*, *J* = 7.5, 1 H); 8.16 (*s*, NH). ¹³C-NMR (125 MHz, CDCl₃): 28.7 (CH₂); 62.5 (CH₂); 111.3 (CH); 112.1 (C); 118.8 (CH); 119.4 (CH); 122.1 (CH); 122.6 (CH); 127.4 (C); 136.4 (C). EI-MS: 161 (*M*⁺), 159 (12), 133 (25), 117 (12), 102 (6), 85 (100), 77 (7).

3-(2-{[(tert-Butyl)(dimethyl)silyl]oxy]ethyl)-1H-indole (2a). Amber oil. ¹H-NMR (500 MHz, CDCl₃): 0.0 (s, 6 H); 0.8 (s, 9 H); 2.9 (t, J = 7.5, 2 H); 3.8 (t, J = 7.5, 2 H); 6.95 – 6.94 (m, 1 H); 7.09 – 7.07 (m, 1 H); 7.142 – 7.140 (m, 1 H); 7.28 – 7.26 (m, 1 H); 7.57 – 7.56 (m, 1 H); 7.85 (s, NH). ¹³C-NMR (125 MHz, CDCl₃): 0.0 (2 MeSi); 23.6 (C); 31.2 (3 Me); 34.2 (CH₂); 69.1 (CH₂); 116.3 (CH); 118.3 (C); 124.1 (CH); 124.4 (CH); 127.1 (CH); 127.3 (CH); 132.9 (C); 141.3 (C). EI-MS: 275 (M^+), 260 (42), 218 (61), 200 (12), 144 (100), 130 (8).

3-Phenoxypropane-1,2-diol (**3**). White solid. M.p. 50–53°. ¹H-NMR (500 MHz, CDCl₃): 3.28 (*s*, 2 H); 3.70–3.64 (*m*, 2 H); 3.78–3.76 (*m*, 1 H); 3.97–3.96 (*m*, 2 H); 4.08–4.06 (*m*, 1 H); 6.88–6.86 (*m*, 2 H); 6.96–6.92 (*m*, 1 H); 7.26–7.23 (*m*, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 63.7 (CH₂); 68.9 (CH₂); 70.5 (CH); 114.5 (2 CH); 121.2 (CH); 129.5 (2 CH); 158.4 (C). EI-MS: 168 (*M*⁺), 150 (50), 136 (22), 119 (30), 94 (100), 77 (28), 66 (35).

2,2,3,3,8,8,9,9-Octamethyl-5-(phenoxymethyl)-4,7-dioxa-3,8-disiladecane (**3a**). Colorless liquid. ¹H-NMR (300 MHz, CDCl₃): 0.17–0.058 (*m*, 12 H); 0.9 (*s*, 18 H); 3.71 (*d*, J = 6.0, 2 H); 3.91–3.90 (*m*, 1 H); 4.16–4.09 (*m*, 2 H); 6.97–6.94 (*m*, 3 H); 7.34–7.29 (*m*, 2 H). ¹³C-NMR (75 MHz, CDCl₃): – 4.62 (2 MeSi); – 4.54 (2 MeSi); 18.3 (2 C); 25.9 (6 Me); 65.0 (CH₂); 69.9 (CH₂); 72.1 (CH); 114.4 (2 CH); 120.5 (CH); 129.3 (2 CH); 159.0 (C). EI-MS: 397 (M^+), 303 (70), 277 (10), 249 (12), 207 (11), 171 (52), 133 (75), 89 (12), 73 (16).

2,2,9,9-*Tetramethyl*-5-(*phenoxymethyl*)-3,3,8,8-*tetraphenyl*-4,7-*dioxa*-3,8-*disiladecane* (**3b**). Slightly yellow oil. ¹H-NMR (500 MHz, CDCl₃): 1.09 – 1.02 (*m*, 18 H); 3.76 (*d*, J = 2.4, 2 H); 3.98 – 3.96 (*m*, 1 H); 4.16 – 4.12 (*m*, 2 H); 6.75 – 6.73 (*m*, 2 H); 6.93 – 6.91 (*m*, 1 H); 7.25 – 7.21 (*m*, 6 H); 7.34 – 7.31 (*m*, 4 H); 7.42 – 7.40 (*m*, 4 H); 7.63 – 7.57 (*m*, 4 H); 7.70 – 7.67 (*m*, 4 H). ¹³C-NMR (125 MHz, CDCl₃): 19.5 (2 C); 27.0 (12 Me); 64.9 (CH₂); 68.6 (CH); 72.3 (CH₂); 114.6 (CH); 120.6 (CH); 127 (7 CH); 129 (7 CH); 133.6 (5 CH); 134 (4 CH); 136 (4 C); 158.9 (C). EI-MS: 391 (20), 331 (8), 253 (12), 215 (100), 199 (30), 152 (20), 139 (20), 79 (42).

Menthol (= 5-*Methyl*-2-(1-*methylethyl*)*cyclohexanol*; **4**). White solid. M.p. 41–44°. ¹H-NMR (500 MHz, CDCl₃): 0.62–0.61 (*m*, 1 H); 0.83–0.81 (*m*, 3 H); 0.92–0.92 (*m*, 6 H); 1.05–1.03 (*m*, 1 H); 1.42 (*s*, OH); 1.65–1.62 (*m*, 1 H); 1.98–1.97 (*m*, 1 H); 2.19–2.18 (*m*, 1 H); 3.41–3.39 (*m*, 1 H). ¹³C-NMR (125 MHz, CDCl₃): 16.0 (Me); 21.0 (Me); 22.2 (Me); 23.1 (CH₂); 25.7 (CH); 31.6 (CH); 34.5 (CH₂); 45.0 (CH₂); 50.1 (CH); 71.4 (CH). EI-MS: 156 (*M*⁺), 138 (100), 119 (20), 106 (55), 95 (30), 86 (10), 57 (40).

 $\begin{array}{l} 2\mbox{-}{[(tert-Butyl)dimethylsilyl]oxy]-4-methyl-1-(1-methylethyl)cyclohexane} ({\bf 4a}). Colorless liquid. \\ ^{1}H\mbox{-}NMR (300 MHz, CDCl_3): 0.098 (s, 6 H); 0.78-0.77 (m, 6 H); 0.92 (s, 9 H); 1.21-1.19 (m, 1 H); \\ 1.42-1.38 (m, 1 H); 1.70-1.59 (m, 2 H); 1.92-1.89 (m, 1 H); 2.31-2.22 (m, 1 H); 3.49-3.39 (m, 1 H). \\ ^{13}C\mbox{-}NMR (75 MHz, CDCl_3): -4.8 (MeSi); -3.7 (MeSi); 15.7 (C); 18.1 (Me); 21.3 (2 Me); 22.0 (CH_2); \\ 25.0 (CH); 25.0 (3 Me); 31.7 (CH); 34.6 (CH_2); 45.5 (CH_2); 50.3 (CH); 72.4 (CH). EI-MS: 270 (M^+), 255 (30), 216 (65), 155 (10), 143 (81), 131 (42), 128 (100), 115 (8), 85 (53), 51 (20). \\ \end{array}$

1,1'-{(tert-*Butyl){*[*5-methyl-2-(1-methylethyl)cyclohexyl]oxyJsilylene}bis(benzene)* (**4b**). White solid. M.p. 61–63°. ¹H-NMR (500 MHz, CDCl₃): 0.51–0.49 (*m*, 3 H); 0.71–0.68 (*m*, 3 H); 0.79–0.76 (*m*, 3 H); 1.1 (*s*, 9 H); 1.27–1.24 (*m*, 1 H); 1.54–1.50 (*m*, 2 H); 1.73–1.69 (*m*, 1 H); 2.28–2.25 (*m*, 1 H); 3.42–3.40 (*m*, 1 H); 7.30–7.28 (*m*, 6 H); 7.59–7.55 (*m*, 4 H). ¹³C-NMR (125 MHz, CDCl₃): 15.7 (Me); 19.7 (Me); 21.5 (Me); 22.4 (CH₂); 25.2 (CH); 27.3 (3 Me); 31.7 (CH); 34.6 (CH₂); 45.4 (CH₂); 50.6 (CH); 73.9 (CH); 127 (6 CH); 129 (4 CH); 134.4 (2 C). EI-MS: 337 (30), 217 (20), 199 (80), 139 (100), 137 (28), 95 (21), 81 (57).

N-(4-Hydroxyphenyl)acetamide (5). White solid. M.p. 169–171°. ¹H-NMR (300 MHz, CDCl₃/DMSO): 1.99 (*s*, 3 H); 6.66–6.63 (*m*, 2 H); 7.28–7.23 (*m*, 2 H); 9.12 (*s*, NH). ¹³C-NMR (75 MHz, CDCl₃/DMSO): 23 (Me); 114 (2 CH); 120 (2 CH); 129.9 (C); 152.7 (C); 167.7 (C=O). EI-MS: 151 (*M*⁺), 121 (4), 109 (100), 80 (10), 65 (2), 53 (4), 42 (5), 26 (5).

N-(4-{[(tert-Butyl)(dimethyl)silyl]oxy}phenyl)acetamide (**5a**). White solid. M.p. $95-97^{\circ}$. ¹H-NMR (300 MHz, CDCl₃): 0.17 (*s*, 6 H); 0.96 (*s*, 9 H); 2.1 (*s*, 3 H); 6.78-6.75 (*m*, 2 H); 7.35-7.32 (*m*, 2 H); 7.6 (*s*, NH). ¹³C-NMR (75 MHz, CDCl₃): -4.5 (2 Me); 18.1 (C); 24.2 (Me); 25.6 (3 Me); 120.2 (2 CH); 121.6 (2 CH); 131.5 (C); 152.3 (C); 168.4 (C=O). EI-MS: 265 (*M*⁺), 250 (5), 208 (100), 192 (5), 180 (8), 166 (30), 149 (8), 134 (5), 116 (4), 106 (15), 73 (37), 43 (35).

N-(4-[[Tris(1-methylethyl)silyl]oxy]phenyl)acetamide (**5b**). White solid. M.p. $64-66^{\circ}$. ¹H-NMR (300 MHz, CDCl₃): 1.10-1.07 (m, 18 H); 1.28-1.21 (m, 3 H); 2.0 (s, 3 H); 6.80 (d, J = 9.0, 2 H); 7.34 (d, J = 9.0, 2 H); 7.9 (s, NH). ¹³C-NMR (75 MHz, CDCl₃): 12.5 (3 CH); 17.8 (6 Me); 24.1 (Me); 119.8 (2 CH); 121.5 (2 CH); 131.4 (C); 152.6 (C); 168.5 (C=O). EI-MS: 307 (M^+), 264 (82), 236 (60), 222 (18), 208 (80), 194 (45), 178 (12), 134 (12), 93 (12), 75 (22), 43 (100).

N-(4-{[(tert-*Butyl*)(*diphenyl*)*silyl*]*oxy*]*phenyl*)*acetamide* (**5c**). Slightly yellow oil. ¹H-NMR (500 MHz, CDCl₃): 1.0 (*s*, 9 H); 2.0 (*s*, 3 H); 6.69–6.68 (*m*, 2 H); 7.19–7.17 (*m*, 2 H); 7.41–7.33 (*m*, 7 H); 7.73–7.69 (*m*, 3 H); 7.9 (*s*, NH). ¹³C-NMR (125 MHz, CDCl₃): 19.4 (C); 24.2 (Me); 26.6 (3 Me); 115.8 (CH); 119.8 (CH); 121.5 (CH); 122.6 (CH); 127.4 (CH); 129.5 (4 CH); 129.7 (3 CH); 131.2 (C); 132.8 (CH); 134.9 (2 CH); 152.3 (C); 154.1 (C); 162.7 (C); 168.0 (C=O). EI-MS: 389 (*M*⁺), 350 (100), 290 (40), 272 (38), 231 (25), 149 (20), 77 (8).

Hydroquinone (= *Benzene-1,4-diol*; **6**). White solid. M.p. 171°. ¹H-NMR (300 MHz, CDCl₃): 6.6 (*s*, 4 H); 7.4 (*s*, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 115.8 (4 CH); 149.5 (2 C). EI-MS: 110 (M^+), 81 (33), 63 (8), 53 (32), 39 (21).

1,4-Bis{[(tert-Butyl)(dimethyl)silyl]oxy/benzene (6a). White solid. M.p. $42-44^{\circ}$. ¹H-NMR (300 MHz, CDCl₃): 0.16 (s, 12 H); 0.97 (s, 8 H); 6.6 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): -4.4 (4 Me); 18.1 (2 C); 25 (6 Me); 120.5 (4 CH); 149.7 (2 C). EI-MS: 138 (M^+), 323 (5), 281 (100), 239 (10), 225 (15), 112 (12), 73 (75), 57 (12), 41 (12).

1,4-Bis[[tris(1-methylethyl)sily]oxy]benzene (**6b**). White solid. M.p. 22°. ¹H-NMR (300 MHz, CDCl₃): 1.09 - 1.06 (m, 32 H); 1.25 - 1.17 (m, 6 H); 6.7 (s, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 12.5 (6 CH); 17.8 (12 Me); 120.3 (4 CH); 150 (2 C). EI-MS: $422 (M^+)$, 379 (97), 351 (40), 337 (15), 323 (40), 309 (25), 195 (10), 112 (70), 105 (50), 87 (28), 73 (39), 59 (55), 43 (22).

1,4-Bis{*[(1,1-dimethylethyl)diphenylsilyl]oxy]benzene* (**6c**). White solid. M.p. 121–123°. ¹H-NMR (300 MHz, CDCl₃): 1.0 (*s*, 18 H); 6.4 (*s*, 4 H); 7.30–7.40 (*m*, 12 H); 7.63–7.60 (*m*, 8 H). ¹³C-NMR (75 MHz, CDCl₃): 19.4 (2 C); 26.5 (6 Me); 120.0 (4 CH); 127.6 (CH); 129.6 (CH); 135.5 (CH); 149.5 (2 C). EI-MS: 586 (*M*⁺), 391 (10), 318 (3), 215 (100), 199 (83), 139 (57), 79 (75), 63 (28).

4-(*[*[(1,1-Dimethylethyl)dimethylsilyl]oxy]methyl)-2-methoxy-1-{[tris(1-methylethyl)silyl]oxy]benzene (**7a**). Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 0.03 (s, 3 H); 0.08 (s, 3 H); 0.94 (s, 9 H); 1.10 (d, J = 7.2, 18 H); 1.3–1.2 (m, 3 H); 3.8 (s, 3 H); 4.67 (s, 2 H); 6.72 (dd, J = 8.0, 1.5, 1 H); 6.82 (d, J = 8.0, 1 H); 6.87 (d, J = 1.5, 1 H). ¹³C-NMR (75 MHz, CDCl₃): -5.1 (MeSi); -2.9 (MeSi); 12.9 (3 CH); 17.9 (6 Me); 18.4 (C); 25.7 (3 Me); 55.4 (MeO); 65.0 (CH₂); 110.5 (CH); 118.3 (CH); 120.0 (CH); 134.6 (C); 144.4 (C); 150.7 (C).

3-Methoxy-4-{[tris(1-methylethyl)sily]/oxy}benzenemethanol (**7b**). Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 1.09 (*d*, *J* = 7.2, 18 H); 1.32 – 1.18 (*m*, 3 H); 3.8 (*s*, 3 H); 4.58 (*s*, 2 H); 6.72 (*dd*, *J* = 8.0, 1.8, 1 H); 6.82 (*d*, *J* = 8.0, 1 H); 6.86 (*d*, *J* = 1.8, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 12.9 (3 CH); 17.9 (6 Me); 55.4 (MeO); 65.4 (CH₂); 111.3 (CH); 119.4 (CH); 120.2 (CH); 134.1 (C); 145.1 (C); 151.0 (C).

(tert-Butyl)[4-([[(tert-butyl)(dimethyl)silyl]oxy]methyl)-2-methoxyphenoxy]diphenylsilane (7c).Yellow oil. ¹H-NMR (300 MHz, CDCl₃): -0.31 (s, 3 H); -0.14 (s, 3 H); 0.73-0.72 (m, 9 H); 0.95-0.97 (m, 9 H); 4.44-4.30 (m, 3 H); 5.28 (s, 2 H); 6.55-7.06 (m, 3 H); 7.20-7.35 (m, 6 H); 7.58-7.65 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): -5.0 (MeSi); -4.6 (MeSi); 10.2 (C); 19.4 (C); 26.5 (3 Me); 31.6 (3 Me); 55.1 (Me); 64.8 (CH₂); 115.5 (2 CH); 119.5 (2 CH); 121.6 (CH); 126.9 (2 CH); 127.7 (2 CH); 129.8 (2 CH); 132.9 (CH); 134.8 (CH); 135.5 (2 C); 136.9 (C); 138.3 (C); 154.9 (C).

(4-{[(tert-*Butyl*)(*diphenyl*)*sily*]*oxy*]*-3-methoxyphenyl*)*methanol* (**7d**). Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 1.12–1.01 (*m*, 9 H); 2.97 (*s*, OH); 3.55 (*s*, 3 H); 4.49 (*s*, 2 H); 6.9–6.5 (*m*, 3 H);

7.5 – 7.2 (m, 6 H); 7.7 (d, J = 7.8, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 19.0 (C); 26.6 (3 Me); 55.4 (Me); 65.3 (CH₂); 111.5 (CH); 119.3 (CH); 120.0 (CH); 127.3 (CH); 127.5 (CH); 127.7 (CH); 128.1 (CH); 129.3 (CH); 129.6 (CH); 129.7 (CH); 133.6 (CH); 134.1 (CH); 134.4 (CH); 138.8 (2 C); 135.3 (C); 144.6 (C); 150.6 (C).

1-([[(tert-*Butyl*)(*dimethyl*)*silyl]oxy]methyl*)-*3-{[tris(1-methylethyl*)*silyl]oxy]benzene* (**8a**). Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 0.19 (*s*, 6 H); 1.05 (*s*, 9 H); 1.20 (*d*, J = 7.0, 18 H); 1.45 – 1.29 (*m*, 3 H); 4.79 (*s*, 2 H); 6.85 (*dd*, J = 7.8, 2.1, 1 H); 7.04 – 6.98 (*m*, 2 H); 7.22 – 7.34 (*m*, 1 H). ¹³C-NMR (75 MHz, CDCl₃): – 5.3 (2 MeSi); 12.7 (3 CH); 17.9 (6 Me); 18.0 (C); 25.9 (3 Me); 64.7 (CH₂); 117.5 (CH); 118.4 (CH); 118.5 (CH); 129.0 (CH); 143.0 (C); 156.1 (C).

3-[[Tris(1-methylethyl)sily]]oxy]benzenemethanol (**8b**). Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 1.10 (d, J = 7.2, 18 H); 1.33 – 1.18 (m, 3 H); 1.77 (s, OH); 4.61 (s, 2 H); 6.80 (d, J = 8.0, 1 H); 6.90 (d, J = 8.0, 2 H); 7.19 (t, J = 8.0, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 12.7 (3 CH); 17.9 (6 Me); 65.2 (CH₂); 118.4 (CH); 119.0 (CH); 119.4 (CH); 129.5 (CH); 142.5 (C); 156.3 (C).

(tert-Butyl)[3-([[(tert-butyl)(dimethyl)silyl]oxy]methyl)phenoxy]diphenylsilane (8c). Yellow oil. $^1H-NMR (300 MHz, CDCl_3): 0.0 (s, 6 H); 0.87 (s, 9 H); 1.1 (s, 9 H); 4.57 (s, 2 H); 6.62 (dd, J = 8.0, 2.0, 1 H); 6.80 (d, J = 2.0, 1 H); 6.83 (s, 1 H); 7.03 (t, J = 8.0, 1 H); 7.43 - 7.32 (m, 6 H); 7.72 (d, J = 8.0, 4 H).$ $^{13}C-NMR (75 MHz, CDCl_3): -5.3 (2 Me); 18.4 (C); 19.5 (C); 25.9 (3 Me); 26.6 (3 Me); 64.7 (CH_2); 117.5 (CH); 118.2 (CH); 118.7 (CH); 127.7 (CH); 128.9 (2 CH); 129.8 (4 CH); 133.1 (2 C); 135.5 (4 CH); 142.9 (C); 155.6 (C).$

 $(3-{[(tert-Butyl)(diphenyl)sily]oxy]phenyl)methanol (8d)$. Yellow oil. ¹H-NMR (300 MHz, CDCl₃): 1.1 (s, 9 H); 1.58 (s, OH); 4.48 (s, 2 H); 6.62 (dd, J = 8.0, 2.0, 1 H); 6.81 (t, J = 7.5, 2 H); 7.02 (t, J = 7.8, 1 H); 7.43 – 7.31 (m, 6 H); 7.70 (d, J = 7.5, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 19.5 (C); 26.6 (3 Me); 65.1 (CH₂); 118.3 (CH); 118.9 (CH); 119.6 (CH); 127.8 (CH); 129.3 (2 CH); 129.9 (4 CH); 132.9 (2 C); 135.5 (4 CH); 132.9 (2 C); 135.5 (4 CH); 142.3 (C); 155.8 (C).

 $(3a\mathsf{R},4\mathsf{S},\mathsf{5}\mathsf{R},6a\mathsf{S})-5-\{[(\mathsf{tert}-Butyl)(diphenyl)silyl]oxy\}-3,3a,4,5,6,6a-hexahydro-4-(hydroxymethyl)-2H-cyclopenta[b]furan-2-one ($ **9**). White solid. M.p. 141–144°. ¹H-NMR (300 MHz, CDCl₃): 1.06 (s, 9 H); 1.61 (s, OH); 2.04 (q, J = 5.0, 3 H); 2.55 (d, J = 2.4, 1 H); 2.59 (d, J = 2.4, 1 H); 2.70–2.64 (m, 1 H); 2.80 (dd, J = 17.4, 10.0, 1 H); 3.38 (t, J = 6.3, 2 H); 4.10 (q, J = 5.1, 1 H); 7.41–7.39 (m, 7 H); 7.68–7.66 (m, 5 H). ¹³C-NMR (75 MHz, CDCl₃): 19.0 (C); 26.9 (3 Me); 35.7 (CH₂); 39.0 (CH₂); 40.8 (CH); 56.8 (CH); 62.1 (CH₂); 75.6 (CH); 84.2 (CH); 127.7 (2 CH); 129.9 (4 CH); 133.4 (2 CH); 135.9 (2 CH); 177.5 (C=O).

 $(3aR,4S,5R,6aS)-4-({[(tert-Butyl)(dimethyl)silyl]oxy]methyl)-5-{[(tert-butyl)(diphenyl)silyl]oxy]-3,3a,5,5,6,6a-hexahydro-2H-cyclopenta[b]furan-2-one ($ **9a**). Colorless oil. ¹H-NMR (300 MHz, CDCl₃): 0.01 (s, 6 H); 0.87 (s, 9 H); 1.12 (s, 9 H); 2.08 – 2.06 (m, 3 H); 2.75 – 2.41 (m, 2 H); 2.88 (dd,*J*= 18.6, 11.0, 1 H); 3.33 (dd,*J*= 10.0, 6.0, 1 H); 3.48 (dd,*J*= 10.0, 6.0, 1 H); 4.15 (q,*J*= 5.0, 1 H); 7.51 – 7.41 (m, 7 H); 7.72 (d,*J*= 7.5, 4 H). ¹³C-NMR (75 MHz, CDCl₃): – 5.6 (Me); – 5.6 (Me); 18.1 (C); 19.0 (C); 25.8 (3 Me); 26.9 (3 Me); 35.9 (CH₂); 39.9 (CH₂); 41.1 (CH); 57.2 (CH); 63.32 (CH₂); 76.3 (CH); 84.7 (CH); 127.7 (2 CH); 129.7 (4 CH); 133.6 (2 C); 135.8 (4 CH); 177.4 (C=O).

2-[(1R,5S)-5-{[(tert-Butyl)(diphenyl)silyl]oxy]cyclopent-2-en-1-yl]ethanol (10). Colorless oil. ¹H-NMR (300 MHz, CDCl₃): 1.1 (s, 9 H); 1.83 – 1.71 (m, 1 H); 2.06 – 1.93 (m, 2 H); 2.19 (dd, J = 170, 7.5, 1 H); 2.29 – 2.26 (m, 1 H); 2.34 – 2.31 (m, 1 H); 2.63 – 2.59 (m, 1 H); 3.78 – 3.64 (m, 1 H); 4.54 (q, J = 7.2, 1 H); 5.59 – 5.56 (m, 1 H); 5.66 – 5.63 (m, 1 H); 7.43 – 7.35 (m, 6 H); 7.70 – 7.66 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 19.3 (C); 27.0 (3 Me); 31.7 (CH₂); 39.8 (CH₂); 45.6 (CH); 61.4 (CH₂); 75.2 (CH); 127.6 (2 CH); 127.7 (2 CH); 128.4 (CH); 129.7 (CH); 129.7 (CH); 133.0 (CH); 133.7 (C); 134.2 (C); 135.7 (2 CH); 135.8 (2 CH).

 $(tert-Butyl) \{ [(1S,2R)-2-(2-\{[(tert-butyl)(dimethyl)silyl]oxy\}ethyl)cyclopent-3-en-1-yl]oxy\} diphenyl-silane (10a). Thick yellow oil. ¹H-NMR (300 MHz, CDCl₃): 0.02 (s, 6 H); 0.85 (s, 9 H); 1.01 (s, 9 H); 1.61 – 1.51 (m, 1 H); 2.22 – 1.94 (m, 3 H); 2.57 – 2.47 (m, 1 H); 3.71 – 3.57 (m, 2 H); 4.44 (q, J = 7.0, 1 H); 5.50 – 5.45 (m, 1 H); 5.67 – 5.62 (m, 1 H); 7.39 – 7.25 (m, 7 H); 7.65 – 7.58 (m, 5 H). ¹³C-NMR (75 MHz, CDCl₃): 5.1 (2 Me); 18.4 (C); 19.4 (C); 26.0 (3 Me); 27.0 (3 Me); 31.9 (CH₂); 39.9 (CH₂); 45.3 (CH); 62.2 (CH₂); 75.3 (CH); 127.5 (2 CH); 127.6 (2 CH); 127.8 (CH); 129.5 (CH); 129.6 (CH); 133.8 (CH); 134.1 (2 C); 134.8 (CH); 135.6 (CH); 135.78 (CH):$

1-(4-Hydroxyphenyl)propan-1-one (**1**). White solid. M.p. $147-149^{\circ}$. ¹H-NMR (300 MHz, CDCl₃/DMSO): 1.07 (*t*, *J* = 7.0, 3 H); 2.82 (*q*, *J* = 7.0, 2 H); 6.77 (*d*, *J* = 9.0, 2 H); 7.74 (*d*, *J* = 9.0, 2 H). ¹³C-NMR (75 MHz, CDCl₃/DMSO): 7.5 (Me); 30.0 (CH₂); 114.3 (2 CH); 127.5 (C); 129.2 (2 CH); 161.0 (C); 198.0 (C=O). EI-MS: 150 (*M*⁺), 120 (2), 93 (20), 65 (10), 63 (3), 38 (2), 26 (2).

1-(4-{/[tert-*Butyl(dimethyl)silyl]oxy}phenyl)propan-1-one* (**11a**). White solid. M.p. 20°. ¹H-NMR (300 MHz, CDCl₃): 0.2 (*s*, 6 H); 0.9 (*s*, 9 H); 1.19 (*t*, *J* = 7.2, 3 H); 2.93 (*q*, *J* = 7.3, 2 H); 6.86 (*d*, *J* = 8.9, 2 H); 7.89 (*d*, *J* = 8.9, 2 H). ¹³C-NMR (75 MHz, CDCl₃): -4.4 (2 MeSi); 8.4 (Me); 18.2 (C); 25.5 (3 Me); 31.3 (CH₂); 119.8 (2 CH); 130.1 (2 CH); 130.5 (C); 160.0 (C); 199.5 (C=O). EI-MS: 264 (*M*⁺), 235 (40), 207 (100), 179 (17), 151 (15), 135 (10), 121 (5), 105 (2), 89 (5), 73 (7), 57 (11).

1-(4-{[Tris(1-methylethyl)silyl]oxy}phenyl)propan-1-one (**11b**). Thick yellow liquid. ¹H-NMR (300 MHz, CDCl₃): 1.12-1.05 (*m*, 18 H); 1.31-1.23 (*m*, 3 H); 2.98-2.91 (*m*, 2 H); 6.90 (*d*, J=9.0, 2 H); 7.90-7.87 (*m*, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 8.4 (Me); 13.0 (3 CH); 17.0 (6 Me); 31.3 (CH₂); 119.6 (2 CH); 130.1 (2 CH); 130.3 (C); 160.4 (C); 199.5 (C=O). EI-MS: 306 (*M*⁺), 263 (38), 235 (22), 207 (33), 151 (6), 135 (6), 121 (6), 89 (25), 57 (100), 43 (20).

Vanillin (=4-*Hydroxy-3-methoxybenzaldehyde*; **12**). Thick yellow solid. M.p. 80–82°. ¹H-NMR (300 MHz, CDCl₃): 3.93 (*s*, 3 H); 6.45 (*s*, OH); 7.02 (*d*, *J* = 8.4, 1 H); 7.42–7.39 (*m*, 2 H); 9.8 (*s*, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 56.0 (Me); 108.8 (CH); 114.4 (CH); 127.4 (CH); 129.7 (C); 147.1 (C); 151.7 (C); 190.9 (C=O). EI-MS: 152 (*M*⁺), 151 (100), 137 (5), 123 (20), 109 (22), 93 (4), 81 (40), 65 (12), 53 (22), 39 (12).

4-{[(tert-Butyl)(dimethyl)silyl]oxy}-3-methoxybenzaldehyde (**12a**). Brown liquid. ¹H-NMR (300 MHz, CDCl₃): 0.1 (s, 6 H); 0.9 (s, 9 H); 3.8 (s, 3 H); 6.95 (d, J = 8.0, 1 H); 7.39–7.35 (m, 2 H); 9.8 (s, H). ¹³C-NMR (75 MHz, CDCl₃): -4.5 (2 Me); 18.4 (C); 25 (3 Me); 55.4 (Me); 110.1 (CH); 120.6 (CH); 126.1 (CH); 130.9 (C); 151.3 (C); 151.6 (C); 190.9 (C=O). EI-MS: 267 ([M + 1]⁺), 251 (3), 225 (10), 209 (85), 194 (100), 179 (6), 165 (5), 73 (4).

REFERENCES

- T. W. Greene, P. G. M. Wuts, 'Protective Groups in Organic Synthesis', 3rd edn., John Wiley & Sons, Inc., New York, 1999, p. 113.
- [2] R. Dureau, L. Legentil, R. Daniellou, V. Ferrières, J. Org. Chem. 2012, 77, 1301; J. K. Rout, C. V. Ramana, J. Org. Chem. 2012, 77, 1566; T. S. Kumar, S. Y. Zhou, B. V. Joshi, R. Balasubramanian, T. Yang, B. T. Liang, K. A. Jacobson, J. Med. Chem. 2010, 53, 2562; M. Petrovaì, M. Budesiìnskyì, E. Zborniìkovaì, P. Fiedler, I. Rosenberg, Org. Lett. 2011, 13, 4200.
- [3] J. R. Hwu, M. L. Jain, F. Y. Tsai, S. C. Tsay, A. Balakumar, G. H. Hakimelahi, J. Org. Chem. 2000, 65, 5077.
- [4] A. DattaGupta, R. Singh, V. Singh, Synlett 1996, 69.
- [5] S. V. Ankala, G. Fenteany, Tetrahedron Lett. 2002, 43, 4729.
- [6] G. Bartoli, G. Cupone, R. Dalpozzo, A. De Nino, L. Maiuolo, A. Procopio, L. Sambri, A. Tagarelli, *Tetrahedron Lett.* 2002, 43, 5945.

Received September 26, 2013